

Development of a Traceable Calibration for Gaseous Oxidized Mercury Species Based on Non-Thermal Plasma Approach

Jan Gačnik, Igor Živković, Sergio Ribeiro Guevara, Jože Kotnik, Sreekanth Vijayakumaran Nair, Andrea Jurov, Uroš Cvelbar, Teodor Daniel Andron and Milena Horvat

ICMGP conference, 27th July 2022

Atmospheric mercury speciation problematic

- Majority of analytical challenges GOM and PBM why?
 - Low ambient concentrations
 - High reactivity (chemical and redox processes)
 - High adsorption "stickiness"

Non-thermal plasma use for GOM calibration

- Non-thermal ("cold") plasma (NTP)
 - Energy is mostly converted into energetic electrons and not into thermal energy – hence "cold"
 - NTP used in Hg research for removal of Hg⁰ (via oxidation) in flue gas

- NTP use for GOM calibration
 - Known quantity of Hg⁰
 - Hg^0 into Hg^{II} species by NTP oxidation
 - Calibration of GOM measurement by NTP-produced Hg^{II} species

Principle of operation

Used for qualitative validation only, not actually a part of the calibration

GMOS TRAIN Hg-ox

Cover art Gačnik et al., Analytical Chemistry, 2022

Development and validation via ¹⁹⁷Hg radiotracer

- 1) Generation of known amount of Hg⁰
 - Well established, via Hg²⁺(aq) reduction and purging
- 2) Oxidation of Hg^0 to HgO, $HgCl_2$ and $HgBr_2$
 - Oxidation efficiency experiments
- 3) How will instruments be calibrated with the generated Hg^{II} species? -thermal reduction to Hg⁰ and (most commonly) AFS/AAS detection
 - Thermal reduction efficiency experiments

Near to 100 % efficiency needed

Validation experiments - ¹⁹⁷Hg radiotracer

+ high specificity

reactor needed for ¹⁹⁷Hg production

- + high sensitivity
- + simple and straightforward detection

¹⁹⁷Hg radiotracer Development and validation via goal: 100 % of Hg^{II} NTP Hg^{II} loading - oxidation Α results: STEP 1 Soda lime trap 100.5 % ± 4.7 % (k=2) for HgO Au trap 96.8 % ± 7.3 (k=2) for HgCl₂ 77.3 % ± 9.4 (k=2) for HgBr₂ N₂ gas reaction **STEP 2** gas goal: 0 % of Hg⁰ breakthrough "plasma trap", Hg⁰ Hg⁰ breakthrough Hg^{II} on KCI crystal results: KCI 🌌 Al₂O₃ < 1 % of Hg⁰ breakthrough $Hg^{II}(aq) \rightarrow Hg^{0}(g)$ He gas o-////////o reduction by SnCl₂ ~ heating All experiments done with ambient GOM coil **RF** plasma $Hg^0 \rightarrow Hg^{\parallel}$ amounts (HgO 100 pg, HgCl₂/HgBr₂ 250 pg

B Hg^{II} thermal reduction

Development and validation via ¹⁹⁷Hg radiotracer

A NTP Hg^{II} loading - oxidation

All experiments done with ambient GOM amounts (HgO 100 pg, HgCl₂/HgBr₂ 250 pg

goal: 0 % of unconverted Hg^{II} <u>results</u>: \rightarrow 0 % - with Al₂O₃ catalyst and >650 °C heating \rightarrow unrepeatable and bad results with catalysts: Pt wire, Au coated corundum, quartz wool

All experiments done with ambient GOM

Establishment of SI-traceability via NIST 3133

Conclusions

- NTP successfully applied for generation of HgO, HgCl₂ and HgBr₂
- Presence of HgO, HgCl₂ and HgBr₂ confirmed by TPD-QMS
- All Hg^{II} species produced quantitatively
- Ambient amounts of Hg^{II} species were used
- \bullet SI-traceability Hg^{II} calibration achieved via NIST 3133

Future (undergoing/planned work)

- Real time calibration using NTP for ambient air analysis
- Comparison with other GOM calibration units
 - Permeation generators
 - Evaporative generators
 - Tekran speciation unit and its internal calibration source
 - Application for continuous emission calibration

Some of the presented material is in publication, do not replicate.

Acknowledgements:

Projects: MercOx, SI-Hg, GMOS-Train

Slovenian Research Agency (ARRS), European Union's Horizon 2020 research and innovation program