

Converter Efficiency & Hg^{II} Solution Storage for Oxidised Hg Measurements

Dr Sophie Page, National Measurement Laboratory, LGC Sophie.Page@lgcgroup.com Co-authors: Philip Dunn, John Entwisle, Sarah Hill, Heidi Goenaga-Infante, Jan Koesters & Carsten Röllig

Determining Converter Efficiency

Why do we care about converter efficiency?

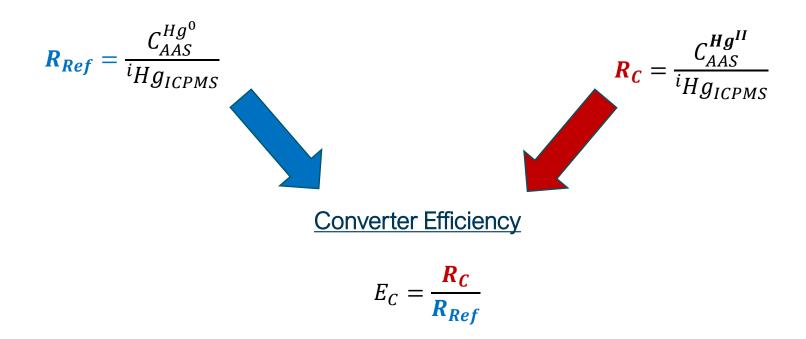
- The most commonly used Hg analysers by field testing laboratories for gaseous Hg monitoring are atomic detectors such as AAS or AFS
- Atomic analysers can only detect Hg⁰
- Volatile Hg^{II} compounds are also prominent species in anthropogenic Hg emissions
- Without the conversion of Hg^{II} species to Hg⁰ they will not be detected which causes negative bias for total Hg measurements

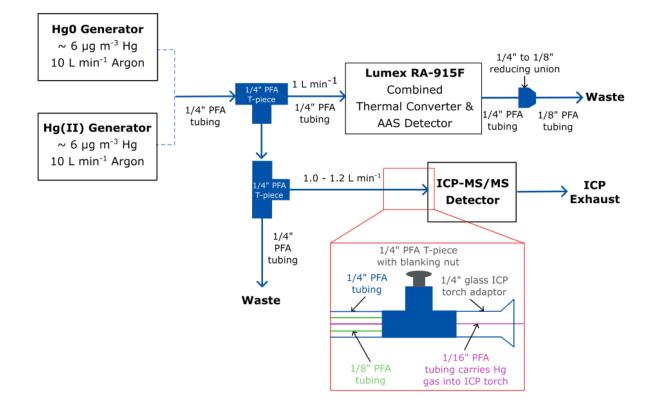
Lumex RA-915F

- Lumex developed it's RA-915F Hg analyser that combines a thermal converter and an AAS detector
- However, the efficiency of the conversion was
 uncertain
- As part of the SI-Hg project, LGC developed a method for determining converter efficiency and determined it under the typical operating conditions

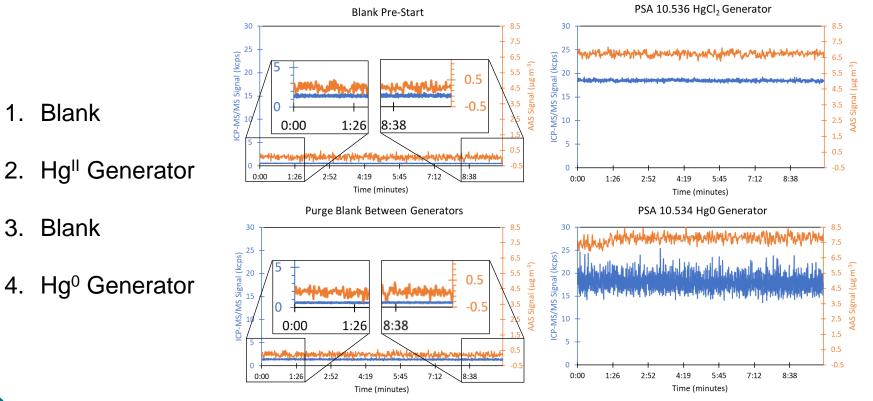
Considerations for Developing a Converter Efficiency Method

- Need to monitor both Hg⁰ and Hg^{II} gases either selectively or independently
 - PSA 10.534 Hg⁰ gas generator
 - PSA 10.536 Hg^{II} gas generator


- Species need to be monitored either online & continuously or intermittently
 - Used independent but parallel AAS & ICP-MS/MS
 - AAS detects Hg⁰
 - ICP-MS/MS detects species independent total Hg


Underlying Principle

Hg⁰ Generator ICP/AAS Ratio

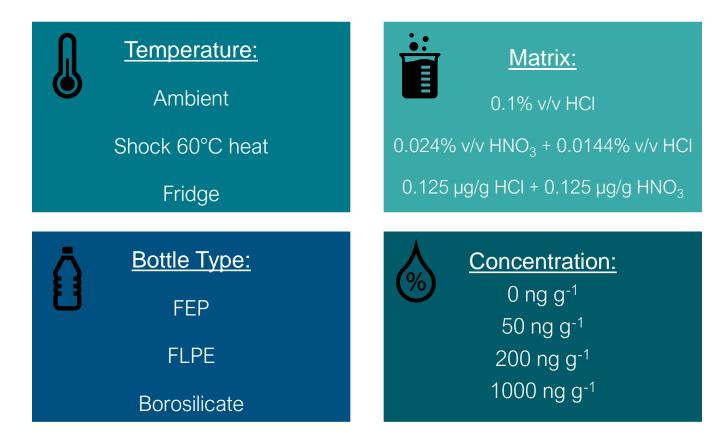

HgCl₂ Generator ICP/AAS Ratio

Converter Efficiency Determination Method

Converter Efficiency Measurement

Results

Date	Generator	Lumex/ICP Ratio (R _{Ref} & R _C)	Converter Efficiency	U _C (<i>k=2</i>)
27/10/2022	PSA 10.534 Hg ⁰	0.000392 (3)	88 %	0.02
	PSA 10.536 HgCl ₂	0.000343 (2)		
28/10/2022	PSA 10.534 Hg ⁰	0.000435 (4)	84 %	0.02
	PSA 10.536 HgCl ₂	0.000365 (2)		
01/11/2022	PSA 10.534 Hg ⁰	0.000724 (12)	85 %	0.03
	PSA 10.536 HgCl ₂	0.000617 (4)		

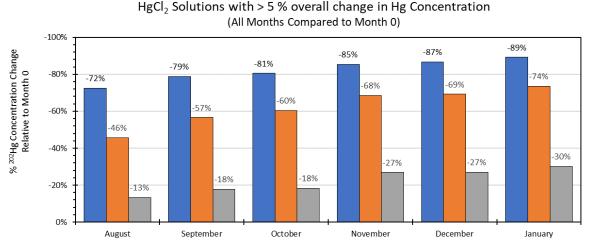

Average Converter Efficiency	86 %
Standard Deviation	0.01
Overall Expanded Uncertainty (k=2)	0.04

Storage of HgCl₂ Solutions

Use of HgCl₂ Solutions

- HgCl₂ solutions prepared from salts are used with liquid evaporative Hg gas generators
- The stability of these salts and solutions over time are a critical uncertainty parameter for liquid evaporative generators
- In the SI-Hg project, the elemental and chromatographic stability of HgCl₂ solutions and salts was examined
- SI-Hg industry and research partners including VDZ, TÜV Rheinland, VTT, and CNR were consulted to understand the range of solution storage conditions

HgCl₂ Solution Storage Conditions

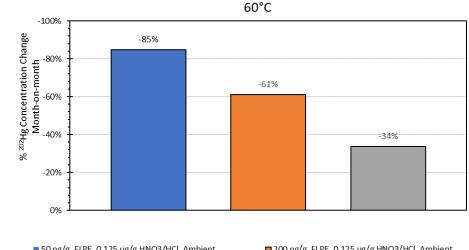

HgCl₂ Solution Stability Study

- 36 solutions per temperature
- The total Hg concentration of each solution was measured once a month of six months at ambient and fridge temperatures
- A one-off 24-hour shock heat experiment at 60 °C
- LGC performed the ambient and shock heat experiments and TÜV Rheinland the fridge experiment

Ambient Solution Stability Results – ICP-MS/MS

• All but 3 of the 36 solutions maintained a stable concentration over the 6 months

200 ng/g, FLPE, 0.125 ug/g HNO3/HCl, Ambient


Unstable solutions were all in: FI PF bottles

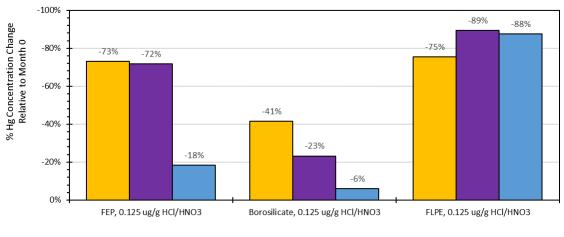
& $0.125 \,\mu g/g \,HNO_3 +$ 0.125 µg/g HCl

50 ng/g, FLPE, 0.125 ug/g HNO3/HCl, Ambient 1000 ng/g, FLPE, 0.125 ug/g HNO3/HCl, Ambient

Shock Heat Solution Stability Results – ICP-MS/MS

- All but 3 of the 36 solutions maintained a stable concentration after heating to 60°C for 24 hours
- Storage conditions that performed poorly in the ambient temperature study also performed poorly in the shock heat study
- The percentage change in Hg concentration was of a similar magnitude to 6 months of ambient temperature storage

 $HgCl_2$ Solutions with > 5 % overall change after 24 hous at


50 ng/g, FLPE, 0.125 ug/g HNO3/HCl, Ambient 1000 ng/g, FLPE, 0.125 ug/g HNO3/HCl, Ambient

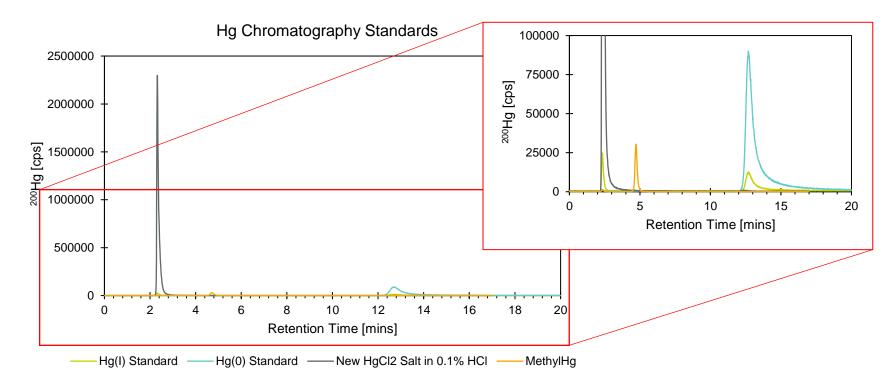
200 ng/g, FLPE, 0.125 ug/g HNO3/HCl, Ambient

Fridge Solution Stability Results – CV-AAS

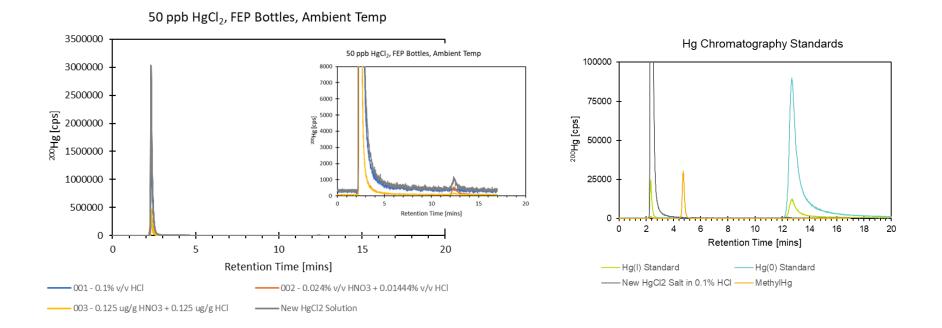
• All solutions stored in 0.1% v/v HCl and 0.024% v/v HNO₃ + 0.0144% v/v HCl were stable over the 6 months

 $HgCl_2$ solutions with > 10 % change in Hg concentration over 6 months

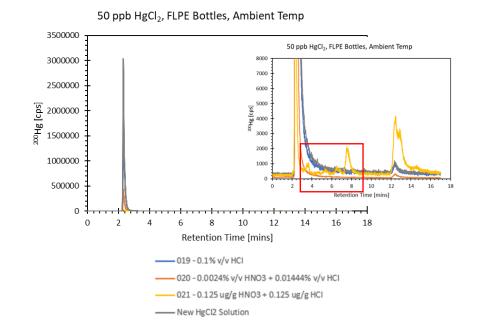
Unstable solutions were all in:

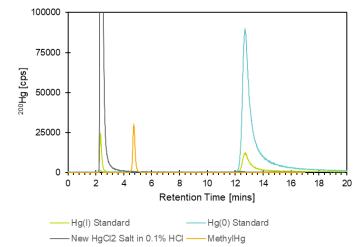

0.125 µg/g HNO₃ + 0.125 µg/g HCI irrespective of bottle type

■ 50 ppb ■ 200 ppb ■ 1000 ppb


Chromatographic Stability of HgCl₂ Solutions

- Analyse the 36 HgCl₂ solutions stored for the 6-month stability study (now 1 year old) and compare amongst themselves and to newly prepared solutions
 - Three new blanks, one of each matrix
 - Three new 50 ppb HgCl₂ solutions, one of each matrix
- Semi-quantitative since only a comparative study is needed
- Dilute all samples to 40 ppb and compare peak areas and chromatograms to determine effects of different storage conditions on the speciation of Hg in the HgCl₂ solutions
- Mobile phase: 0.1% m/v Cysteine (HCI), 1 mM acetic acid, adjusted to pH 4 with ammonia solution
- <u>Column</u>: ProteCol ™ C18G 120Å 3µm particle size, length 150mm 4.6mm id


Hg Chromatography Standards



Chromatography Results – FEP & Borosilicate

Chromatography Results - FLPE Bottles

Hg Chromatography Standards

HgCl₂ Solution Stability Conclusions

- FLPE bottles and 0.125 µg/g HNO₃/HCl storage solutions should not be used to store HgCl₂ solutions at ambient temperatures or up to 60°C for 24 hours
- FEP and borosilicate bottles are suitable for storing $HgCl_2$ solutions with 0.1% HCl, 0.125 µg/g $HNO_3/HCl \& 0.024\% v/v HNO_3 + 0.0144\% v/v HCl at ambient temperatures and up to 60°C for 24 hours$
- 0.125 ug/g HNO₃/HCI should not be used at all to store HgCl₂ solutions at fridge temperatures
- Higher storage concentrations typically result in less Hg loss

Good Practice Guide

The Good Practice Guide will be made available by the end of September

For more information, please visit the SI-Hg project website

Thank you for listening