Calibration methods for atmospheric mercury concentrations

Igor Zivkovic Jozef Stefan Institute

Mercury in the atmosphere

- Mercury fractions:
 - Total gaseous mercury, TGM
 - Gaseous elemental mercury, GOM
 - Gaseous oxidized mercury, GOM
 - Particulate-bound mercury, PBM
- Calibration issues
 - Calibration usually using Hg(o) for all Hg fractions
- Requirements for species-specific Hg calibrations

Calibration capability

- For high concentrations
- For GEM
- Validation of calibration strategies

- For low concentrations
- For GOM
- Recent developments

- Helium (cold) plasma
- Energy in energetic electrons vs. energy converted into heat
- Quantitative conversion of Hg(o) to Hg(II)
- Use of reactive gasses (O2, Cl2, Br2) for the production of HgO, HgCl2, HgBr2
- Validated using radioactive ¹⁹⁷Hg tracer

pubs.acs.org/ac

Calibration Approach for Gaseous Oxidized Mercury Based on Nonthermal Plasma Oxidation of Elemental Mercury

🔁 @ 🛊

Article

Jan Gačnik,[#] Igor Živković,[#] Sergio Ribeiro Guevara, Jože Kotnik, Sabina Berisha, Sreekanth Vijayakumaran Nair, Andrea Jurov, Uroš Cvelbar, and Milena Horvat*

A NTP Hg^{II} loading

B Hg^{II} thermal reduction

 Design of the thermal reduction tube

Hg^{II} to Hg⁰ thermal reduction, Hg^{II} loaded by spiking

Catalystused	Hgº [%]	Unconverted Hg ^{ll} [%]	Mass balance [%]
None	88 (26)	25.6 (43)	113 (22)
Au-coated silica	38 (3)	61(5)	99 (2)
Pt wire	39 (28)	49 (32)	88 (5)
Quartz wool	86 (19)	15 (12)	101 (8)
Al ₂ O ₃	101 (3)	<0.1	101 (3)

Identification of Hg(II) species

TPD-QMS

MDPI

- GOM calibration system Optoseven
- Validated at high levels
- Behavior at ng/m³ level?

Article Validating an Evaporative Calibrator for Gaseous Oxidized Mercury

Jan Gačnik^{1,2}, Igor Živković², Sergio Ribeiro Guevara³, Radojko Jaćimović², Jože Kotnik² and Milena Horvat^{1,2,*}

Experimental setups

Flow resistance!

Take away message

Still a lot of work to be done to properly measure low atmospheric Hg levels

